

Alfalfa for Better Management of Farm Scale Nitrogen

Ying Jun Zhang

College of Grassland Science and Technology

China Agricultural University

Nov. 15th , 2022

Outline

- Challenges in nitrogen management
- Advantages of alfalfa in nitrogen management
- The N utilization of alfalfa-silage corn relay intercropping system
- Conclusion and outlook

Challenges in nitrogen management

Resource and Environment Challenges

Agricultural production is one of the main ways of nitrogen loss

- Soil acidification,
- Eutrophication and water pollution
- Air pollution

- Biodiversity loss
- Health impacts
- Greenhouse gas emissions
- Climate change

Resource and Environment Challenges

(Tilman et. al., 2002)

Resource and Environment Challenges in China

		Taihu	ı region	North China Plain		
N rate (kg of N per hectare) Recovery rate (%)*		Rice	Rice Wheat-south		Maize	
		300 29.6 ± 4.9	250	325	263 25.5 ± 5.2	
			18.4 ± 6.3	31.0 ± 3.6		
Retention rate (%)*		21.7 ± 5.1	28.5 ± 4.6	45.7 ± 5.4	33.9 ± 2.3	
Loss pathway	NH ₃ volatilization (%)	11.6 ± 4.7	2.1 ± 1.4	19.4 ± 5.2	24.7 ± 5.6	
	Leaching out of 1 m soil depth (%)	0.3 ± 0.5	3.4 ± 2.1	2.7 ± 2.6	12.1 ± 8.5	
	Denitrification (%)	36.4 [†]	43.5 [†]	0.1 ± 0.04	3.3 ± 1.6	

Total fertilizer N loss:

Wheat: 71-155 kg N /ha

Maize: 108 kg N/ha

Rice: 174 kg N /ha

✓ Diversify cropping system

(Ju et al, 2009, PNAS)

(Zhang et al, 2015, Nature)

- ✓ Optimized N fertilization
- ✓ Maximize crop N-uptake efficiency
- ✓ Biological nitrogen fixation (BNF)

Advantages of alfalfa in nitrogen management

• Forage yield: 10-18 t DM /ha

• CP yield: 1.9-3.4 t CP /ha

Uptake excess nitrogen

Alleviate P limitation induced by N deposition

The long-term alfalfa establishment drives the soil P redistribution in different forms and could deal with the P-limitation caused by N deposition in the carbonate soil.

(Song et al, 2022, .J. Environ. Manage)

N credits of alfalfa for the subsequent crop

derived from legume residue, fertilizer, and soil

(0. B. Hesterman, *et al*, 1987, Agron. J.)

Reduce residual soil nitrate and NO₃-N leaching

Planting alfalfa with corn reduced NO₃-N content in the soil.(C-C-C+A-A-A)

Rotational systems including alfalfa with annual crops can reduce movement of N below the root zone.

(M. Tomera, et al, 2014, . AGEE)

The grain yield, biomass dry matter of maize crop, maize grain N content, total N uptake, maize leave N content were improved in intercropping with proper N fertilizer.

(J. Nasar *et al*, 2020, Plant Biology)

52 kg N ha⁻¹ << 158 kg N ha⁻¹ for maize

(Wei et al, 2018, Scientia
Agricultura Sin|ca)

200 kg N ha⁻¹ for rice
(Ju et al, 2009, PNAS)

Increasing N application resulted in a linear decline in alfalfa forage yield, nutritive quality, irrigation water use efficiency, and N use efficiency.

(M. Kamran et al, 2022, Field Crops Res.)

3

The N utilization of alfalfa-silage corn relay intercropping system

- ☐ Proper N rate for the system
- N balance of the system

The North China Plain(NCP)

- ✓ winter cold and summer hot
- √ monsoon climate
- √ rain in hot season

Alfalfa production problems in the NCP

: Harvesting 4 times a year: Harvesting 5 times a year

- Difficult to dry (30% losses)
- Heavy pests and diseases
- Summer slump
- Waste of heat and rainfall (70%)

Distribution of alfalfa yield in the NCP

◆ The yield of 1st and 2nd cuts of alfalfa account for >60% of year total yield.

Test area	Number of varieties	Test period	1 st cut %	2 nd cut %	3 rd cut	4 th cut	5 th cut	Percentage of first 2 cuts	
Hebei	11	2003-2005	39.94	22.65	22.25	15.17		62.6	
Hebei	22	2005-2011	35.76	23.36	24.81	16.07		59.12	
Hebei	14	2012-2015	31.90	20.61	16.82	18.59	12.09	52.51	
Beijing	10	2002-2007	32.00	25.00	25.00	18.00		57	
Hebei	6	1997-2000	38.40	24.30	22.60	14.70		62.7	
Henan	42	2001-2005	37.68	24.16	17.42	12.74	8.00	61.84	
Henan	18	2004-2006	41.02	24.06	15.49	11.29	8.14	65.08	
Shandong	1	2007-2008	40.27	26.85	23.49	9.40		67.12	
Beijing	8	1998-2000	34.70	20.02	24.72	20.57		54.72	

Alfalfa-silage corn relay intercropping

Spring

Summer

- ➤ Maximize the production potential of forages
- > Improve the efficiency of land and light resources
- Reduce nitrogen resource consumption and pressure on the environment

DM yield and CP yield of corn

- ➤ High environmental N resulted in low N response to solo-seeded corn;
- ➤ Alfalfa had strong competition for N;
- > N can effectively improve nitrogen nutrition of corn

DM yield and CP yield of alfalfa

中国农业大学草业科学与技术学院 COLLEGE OF GRASSLAND SCIENCE AND TECHNOLOGY

N fertilizer: no effect on alfalfa

◆ Intercropping: 33%-69% of yield reduction 37%-64% of CP yield reduction

Spring alfalfa production

◆ Intercropping: 30%-55% of alfalfa plants reduction spring alfalfa production had small differences compared with AA in 2018 and 2019

◆ N fertilizer: no effect on alfalfa stand no effect on spring alfalfa production

square meter (plants)

Alfalfa plants per

150

120

Alfalfa plants per m²

60000 plant/ha

DM yield and CP yield of intercropping system

> High land and N use efficiency

- \triangleright \ge N rate of solo corn of local practice is suggested for the system
- Autumn sown alfalfa has longer utilization years

N balance

$$> BNF = \left[\alpha \times \frac{Y}{NHI} + \beta\right] \times BGN$$
 (Anglade, 2015)

- ➤ BNF including the underground
- > BNF of alfalfa may be overestimated by using the equation

- ➤ Alfalfa-based systems/winter wheat-summer corn rotation in the NCP had high N surplus
- > Solo-seeded corn with low N rates consumed soil N

The fate of nitrogen?

Ammonia volatilization

> Ammonia volatilization was mainly affected by N rates

Nitrate distribution in 0-210 cm soil

- ➤ Alfalfa efficiently lowered Nitrate content within cereal root zone (1m) and out of cereal root zone
- ➤ Alfalfa absorbed soil N and stored N in the root

NO_3 -N distribution (0-210cm)

Nitrate accumulation in 0-210 cm soil profile

Resource consumption

Yield-scaled N fertilizer use and yield-scaled irrigation water use in different treatments during 2017–2020

	Treatment	2017	2018	2019	2020	4-yr average			
	Yield-scaled N fertilizer use, (kg N t ⁻¹)								
Intercropping	A+M	6.8 b	5.3 c	4.6 c	6.7 c	5.9 c			
Solo corn	MM	6.8 b	7.1 b	6.9 b	9.2 b	7.5 b			
Wheat-Corn	W-M	13.2 a	14.2 a	14.2 a	14.4 a	13.7 a			
Yield-scaled irrigation water use, (mm t ⁻¹)									
Intercropping	A+M	6.8b	2.7c	2.3c	3.3 c	3.9d			
Solo corn	MM	6.8b	3.5b	3.5b	4.6 b	4.6c			
Solo alfalfa	AA	11.7a	3.3b	3.2b	3.2 c	6.1b			
Wheat-Corn	W-M	6.0b	7.8a	8.6a	8.7 a	7.5a			

Soil characteristics

Soil characteristics (0-30 cm) as affected by different treatments in October 2019 after 3-yr treatment

		Total N	Total C	TOC	MBN	MBC	Avail. P	Avail. K
	treatment	$(g kg^{-1})$	(g kg ⁻¹)	$(g kg^{-1})$	(mg kg ⁻¹)	$(g kg^{-1})$	(mg kg ⁻¹)	$(mg kg^{-1})$
Intercropping	A+M	0.94	18.6 a	7.8	22.0 a	1.1	4.0	86.0
Solo corn	MM	0.87	17.3 ab	6.7	18.9 a	1.0	3.9	94.0
Solo alfalfa	AA	0.93	18.9 a	7.4	21.2 a	1.0	3.6	113.0
Wheat-Corn	W-M	0.84	16.2 b	6.3	6.3 b	0.7	3.3	104.0
Source of variation P value								
		ns	0.006	ns	<0.001	ns	ns	ns

Conclusion and outlook

- Alfalfa is both "N source" and "N sink", and playing significant role in nitrogen management at farm scale.
- Alfalfa-silage corn intercropping provides an efficient solution for the areas which have hot-rainy summer for alfalfa production.

Hebei-NCP

Ningxia-Northwestern China

Shanxi-Northern China

Thanks for your attention